DE · Topics · Resources · Sponsored Content

Introduction to 3D Printing with PμSL

PμSL technology is ideal for electronics, medical devices, microfluidics, filtration, and microelectro-mechanical systems (MEMS).

Small devices that require high precision, high resolution, and high accuracy are all around us. From the electronic connectors in cellphones to the tiny valves in medical pumps, these devices aren’t just small in size; many have small features with significant complexity.

Historically, micro CNC machining and micro injection molding were the only way to make precise parts like this. Both methods require paying for and waiting for tooling, which adds project costs and lengthens time-to-market.

Additive manufacturing, or 3D printing, doesn’t require molds or tools. Moreover, it can reduce the time from concept to prototyping to low-volume production. Yet most 3D printers aren’t able to make small parts with high precision, resolution, and accuracy. Now that’s all changing. Thanks to PμSL technology from Boston Micro Fabrication (BMF), you can 3D-print small parts with 2 μm resolution and +/- 10 μm accuracy at scale.

What is PμSL?

BMF’s 3D printers use projection micro-stereolithography (PμSL), a form of stereolithography (SLA) that incorporates a DLP® light engine, precision optics, motion control, and advanced software. SLA produces parts in layers using a photochemical process.

A photosensitive liquid resin is exposed to light so that polymeric cross-linking and solidification occurs. With PμSL technology, a flash of ultraviolet (UV) light causes the rapid photopolymerization of an entire layer of resin. PμSL technology supports continuous exposure for faster processing.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

Hexagon Launches HxGN Alix
Company says new AI-powered assistant to assist industrial enterprises in digitally transforming heavy asset operations.

Siemens Releases AI-Augmented Electronic Systems Design Software
Latest release combines Xpedition, Hyperlynx and PADS Professional software via unified user experience with cloud connectivity and collaboration, company reports.

Siemens and Microsoft Deliver AI-Boosted NX X to Azure
Collaboration designed to deliver AI-based natural language assistance to NX X to automate design tasks for experienced users and bring...

EOS Debuts New Alloys for Metal Additive
Nickel-based superalloys target turbomachinery, chemical, maritime and space applications.

HP Partners with ArcelorMittal on Additive Manufacturing Plans
By combining HP’s expertise in printing with ArcelorMittal’s leadership in sustainable steel solutions, the collaboration aims to promote...

A GPU Revolution in Discrete Element Method Applications
Learn about the impact of GPU acceleration on DEM simulations from real-world users at the ATCx Discrete Element Method event....

All posts