DE · Topics · Resources · Sponsored Content

Introduction to 3D Printing with PμSL

PμSL technology is ideal for electronics, medical devices, microfluidics, filtration, and microelectro-mechanical systems (MEMS).

Small devices that require high precision, high resolution, and high accuracy are all around us. From the electronic connectors in cellphones to the tiny valves in medical pumps, these devices aren’t just small in size; many have small features with significant complexity.

Historically, micro CNC machining and micro injection molding were the only way to make precise parts like this. Both methods require paying for and waiting for tooling, which adds project costs and lengthens time-to-market.

Additive manufacturing, or 3D printing, doesn’t require molds or tools. Moreover, it can reduce the time from concept to prototyping to low-volume production. Yet most 3D printers aren’t able to make small parts with high precision, resolution, and accuracy. Now that’s all changing. Thanks to PμSL technology from Boston Micro Fabrication (BMF), you can 3D-print small parts with 2 μm resolution and +/- 10 μm accuracy at scale.

What is PμSL?

BMF’s 3D printers use projection micro-stereolithography (PμSL), a form of stereolithography (SLA) that incorporates a DLP® light engine, precision optics, motion control, and advanced software. SLA produces parts in layers using a photochemical process.

A photosensitive liquid resin is exposed to light so that polymeric cross-linking and solidification occurs. With PμSL technology, a flash of ultraviolet (UV) light causes the rapid photopolymerization of an entire layer of resin. PμSL technology supports continuous exposure for faster processing.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

Skip the Mesh, Print from CAD
Skipping the mesh and printing from CAD, some argue, is long overdue.

SPEE3D Collaborates With Northeastern University Kostas Research Institute
Purpose of collaborative effort is to bring additive manufacturing to students and military.

Azure Printed Homes Launches $4.2 MM Crowdfunding Campaign
Company named a 2025 SXSW Innovation finalist in Urban Experience for Sustainable Homes

JT File Importer Updated in KISTERS 3D CAD Visualization App
The new JT importer maximizes efficiency under multithreading demands.

Altair and Cranfield University Sign Simulation-Focused MoU
Organizations agree to advance use of simulation, data analytics, and AI.

Role of Additive Manufacturing Through 2030
The global market for aerospace additive manufacturing is estimated at US$1.2 billion in 2023 and is projected to reach US$3.8 billion...

All posts